This
is just the beginning of a long article I have in the works on shaft
bend. I
hope to complete it sometime in 2014. But let's start it with a
little-known
fact about shaft behavior.
The Question[s]
When I started looking at ShaftLab
traces
fifteen years ago, a question
occurred to me that bothered me for months -- probably a year. It seems
a bit too abstract to be interesting when stated straight out: When
a flexed
golf shaft rotates around its axis, does the bend rotate with it?
But it's really not abstract at all if you
are trying to understand how a shaft reacts to a swing. Let's look at a
swing and see why it is interesting. Here is a ShaftLab trace for a
representative professional swing.
The exact shape is a "signature" for the swing, but some features are
shared by all good golf swings:
For the first half of the downswing, the shaft
exhibits a
toe-up bend. I admit I chose this particular swing for purity of the
toe-up
bend. But all the professional swings I've seen have a large,
predominantly toe-up bend for the first half or more of the downswing.
At impact, the shaft is bent toe-down ("D" on the
graph).
At impact, the shaft is bent in lead ("C" on the
graph).
Other stuff happens between the midpoint of the downswing and impact,
but #1, #2, and #3 are all pretty unmistakeable in all decent golf
swings.
Now a question: Which
bend at
impact might
be due to
rebound from the large toe-up bend: the toe-down bend or the clubhead
lead? Most people faced with this question feel that
toe-down is
the rebound from toe-up. How could lead-lag bend possibly be involved?
Before answering the question, allow me to point out that the two highlighted questions
above are
the same. Remember, the shaft rotates 90º from the top of
the
backswing to impact. That means while the early toe-up bend was in the
swing
plane, the toe-down bend at impact is across the swing plane -- and the
clubhead lead is in the swing plane. Therefore:
If the flex rotates with the shaft, then toe-down
bend
might be a rebound from toe-up bend.
If the flex stays in the same plane no matter how the
shaft
rotates, then leading bend might be a rebound from toe-up bend.
Note:
I have
been careful to say "might"! I don't know if either #2 or #3 actually
is a rebound effect. That's a question for another day.
The Answer
Sometimes analysis is the way to answer a physics question. When I
first thought about the question, I tried thinking analytically. It
took a while -- months, in fact -- to convince myself. I did come up with
the correct answer.
But sometimes a good old experiment will do the job better, more
easily, and more convincingly. So let's
make this a lab course. Here's a video of the experiment I did in my
basement.
This demonstrates pretty conclusively that the shaft flex remains in
the plane it was, rather than rotating with the shaft.
The obvious corollary is that the lead bend at impact might be due to
rebound
from the toe-up bend, but the toe-down bend cannot be. That is because
the lead bend is in the same plane as the toe-up bend, even though the
shaft has rotated 90º in the interim.
Sidelight:
I
realized I would need some sort of indicator to show rotation on the
video; the shaft and the chuck were circular in section and polished,
so you could not see rotation. I had trouble finding the drinking
straws in
the kitchen, and asked my wife where they were. She said, "Well you
don't drink with them. Are you doing some sort of science experiment?"
I guess after 47 years living together, people get to know one another.
The Explanation
For
readers who are
analytically inclined, Here is my cut at why shafts behave this way.
When the shaft is flexed, what is holding it in position are
inertial
forces (the weight at the tip and the hands or a clamp at the butt)
countered by
spring forces in the shaft itself. None of the shaft bend is a
permanent deformation; it is simply a spring reaction to the inertia of
the mass at the tip.
When the shaft is rotated, it obviously rotates the mass at the tip.
(See Figure A.) The rotation at the butt exerts torque on the shaft,
which is transmitted the length of the shaft and rotates the weight.
But
can the shaft
exert a force to move the mass laterally around the butt's axis, so the
bend itself
rotates? (See Figure B.) Well, it could if it were permanently bent,
but it is not. As noted above, it is held in bend by spring forces and
inertia of the tip weight. The mass wants to say where it is, or move
in the direction it is already moving.
The spring force simply wants to restore the shaft to straight along
the butt axis. In order for the bend to rotate, there would have to be
a considerable force (labeled "???" in Figure B) perpendicular to the
plane of the bend -- and around the butt axis. I can't think of a
single mechanism to transmit that sort of force down the shaft.
Even if you don't accept this explanation, there is no arguing with the
answer to the original question. That has been shown unequivocally in
the lab.
Last
modified -- Jan 26, 2014
Copyright Dave Tutelman
2024 -- All rights reserved